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CALCULATION OF METAL PLATE FUSION BY A 

CONCENTRATED ENERGY FLUX 

A. A. Uglov and O. G. Sagdedinov UDC 536.421:539.211 

The one-dimensional problem of heating and melting of a metal plate by a constant 
surface heat source is considered. The kinetics of fusion front motion are stud- 
ied with consideration of absorption of the latent heat of phase transition up to 
temperatures close to the boiling point. 

Studies of the processes of heating and formation of a melt under the action of concen- 
trated energy sources on condensed media have been under way for quite some time. Interest 
therein has been stimulated by the need to develop laser, plasma, electron-beam, ion, and 
other forms of materials processing. In such technological processes as laser doping, sur- 
facing, laser-plasma compound synthesis, etc. redistribution of components initially depos- 
ited on the~target surface, gas saturation, chemical compound synthesis, and other pro- 
cesses take place in the liquid phase. To study and optimize the latter it is necessary to 
know the depth of the melt pool and the temperature distribution therein to a sufficient 
accuracy. In connection with this, a series of studies [1-9] has been dedicated to solution 
of the problem of fusion under the action of a concentrated energy source. In [8] the ap- 
proximate Blot method was used to consider fusion of a semi-infinite target. The shortcom- 
inBs of that technique are: the complexity of theoretical justification, insufficient accu- 
racy (the erroriin determining pool depth reaches 15%), and the absence of any generaliza- 
tion to fusion of finite plates. Numerical calculation by a computer was used in [9] with 
a finite difference technique and explicit specification of the fusion front. The short- 
coming of this method is the necessity of composing a complex program. 

In the present study we will offer an approximate analytical solution of the problem of 
heating and fusing a metal plate of finite thickness, which is characterized by simplicity, 
high accuracy (error of about i%), and ease of use. Major attention will be given to phase 
transition kinetics. 

We will briefly describe the process to be considered. A constant energy flux is inci- 
dent on a metallic target of finite thickness and is absorbed upon the surface. We will as- 
sume that the coefficient for absorption of the concentrated energy flux by the surface is 
approximately constant, which is valid, for example, for a low-energy electron beam. More- 
over, we let the transverse dimension of the source action zone R be much greater than the 
target thickness H: R ~ H. The problem can then be considered in one-dimensional~formulation. 

A. A. Baikov Metallurgy Institute, Academy of Sciences of the USSR, Moscow. Translated 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 62, No. 3, pp. 480-485, March, 1992. Original ar- 
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Fig. I. Temperature of front (a) and rear (b) target surfaces and melt depth (c) vs 
time for various parameter values: i) $ = 0, ~ = i; 2) 0.23 and i; 3) 0 and 0.75; 4) 
0.23 and 0.75. 

Fig. 2. Spatial dependence of temperature field T(z, t) at various times: i) ~ = 0, 
= i, t = 1.14; 2) 0.23, i, and 1.14; 3) 0, i, and 0.66; 4) temperature gradient on 

front target surface 8T(z = 0,t)/Sz vs ~. 

We also will assume that the power absorbed from the source q ~ 10 s W/m 2, and will trace the 
action of the source up to the time when the target surface temperature reaches the metal 
boiling point or the target melts through. Then, as corresponding estimates will show, ther- 
mal losses due to convection, thermal radiation, and metal evaporation may be neglected in 
comparison to q. After the target is heated to the metal fusion point a melt layer is 
formed, the internal border of which, separating liquid and solid phases, moves into the 
depths of the target, while the outer boundary remains fixed. On this moving fusion front 
absorption of the latent heat of phase transition occurs. Assuming the thermophysicalchar- 
acteristics of the metal and its melt identical and constant, we obtain the following mathe- 
matical formulation: 

a~T OT O ~ z ' ~ H ,  t ' ~ O ,  T ( t ' = O ,  z ' )=To ,  
d t '  ' 

OT ~'=o ~ a T  Z 8z' = q '  a = - - ,  ~ = 0 ;  cy Oz' "=n 
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aT ] = - - X  aT I -F vL ds(t ')  
t' >j t,.: Oz' Iz'=s(t')-o az' l~,=s(t')+o dr' 

T(t ' ,  z ' = s ( t ' ) ) = T , . ,  s ( t<~t , . )=O,  

T (t', z ' = O ) ~ T b !  T (t', z' ------ tt) <~ T,.. 

We introduce the dimensionless variables: 

z' t' a T - -  To s ' z =  , t = - - ,  T =  , s---- , T m = l ,  
H H ~ Tm - -  To H 

qH L o~---- , ~____ , Tb,__ Tb- -To  
L (T~ -- To) c (T~ -- To) Tm -- To 

Now, making use of the linearity of the thermal conductivity equation, we represent the 
unknown temperature field T in the form of the sum of the temperature field T z produced by 
the concentrated source alone and the temperature field T 2 produced by absorption of the heat 
of phase transition on the moving fusion front. T = T l + T 2. Then for the fields T l and T 2 
the problem may be written as: 

02T1 OTa 0 ~< z ~ 1, t ~ O, T I (0, z) = OTa = O, 
az~ at ' - az z=, 

OTl.z= ~ 07'1 OT1 l -~Z ~ 5, -- , 

az z=s(O-o -~z z=s(O+o 

t >/ t in:  
02T2 OT 2 
az 2 Ot 

, 0 < z < l ,  T ~ ( t <  t,~, z ) = 0 ,  

OT,oz ~=o= OT~oz z=1=O' 

OT~ ~=~(0-o -- OT~ I + 6 ds (t) 
Oz Oz ==~(o+o dt 

s (t ~ t~) ---- 0, T~ (t, z ---- s (t)) + T~ (t, z = s (t)) = 1, 

T~(t, 0 ) + T ~ ( t ,  0 )~Tb~ Tz(t, 1 ) + T 2 ( t ,  1 ) ~ 1 .  

It is thus evident that T z is a solution of the problem of plate heating and fusion for 
= O, while T a is completely determined by the law of motion of the fusion front z = s(t), 

which is given by the equation Tz(t , s) + T2(t, s) = i. In the final outcome T 2 depends in- 
directly (in terms of s(t)) on T I. 

We seek the temperature field TI, knowing its asymptote as t + 0 and t § =, in the fol- 
lowing form: 

T1 = ~ (f0 (t) exp ( - - f l  (t) z - -  f~ (t) z ~) ~- f3 (t) z~). 

Then, satisfying the boundary conditions at z = 0 and z = I, we find: 

f3 = (1 + 2fof~)exp ( - - f l - -  f2), f l  = f--~- 

Expand ing  T z n e a r  z = 0 i n  p o w e r s ,  s u b s t i t u t i n g  i n  t h e  t h e r m a l  c o n d u c t i v i t y  e q u a t i o n ,  
and e q u a t i n g  t e r m s  w i t h  z e r o e t h  and  f i r s t  powers  o f  z ,  we o b t a i n :  f a  = 1 / ( 6 f ~ )  and a d i f f e r -  
e n t i a l  equation for f0- To find f0 the simplest approach is to merge its known asymptotes 
as t + 0 and t + ~, representing the unknown function in the following form: 

f0(/) 2 7 / t  ( ( 61 62 63 ) )  -1 ' 
7/---7- 1 - exp  7 / F  t t 7 / F  

2 ~ 1 
, U ,  3 " 
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The accuracy of the expression presented for f0 is approximately 1% of the dimension- 
less fusion temperature, equal to unity. 

To find the temperature field T 2 we solve an intermediate problem, having determined the 
temperature field T 3 produced by heating of a semi-infinite space by a heat source moving at 
constant velocity O, the power density of which is equal to the same velocity ~: 

O~Ta _ OT~ ,  z ~ O ,  t ) t , ~ ,  T 3 ( t ~ t m ,  z ) = O ,  
Oz ~ O/ 

OTSoz ]z=o = TsI~=. = O, O (t - -  tin) ~ 1, 

OT3 z=~-~m)  - ~  = OT~ + O. 
Oz Oz ]z=e(~-%)+o 

We seek the temperature field T~ in the form 

o ~< z ~< o (t - -  t,,,): T~ = he (t) § h~ (t) y + h2 (t) y2, 

z ~ .  9 (t - -  tin): T3 --/'to (t) exp ( - - g ~  (t) y - -  g2 (t) y2), b' = z - -  O (t - -  tin)- 

Using the thermal source of [4], we find: 
l 

> ' dt'  exp( o2(t_t ,)  + 
h e =  i 2 ] / a  (t - -  t') 4 ' ' tm 

tm 

o 2 (2 (t - -  tin) - -  (t - -  t')) 2 ) dt'O exp ,~ 
2 ] / ~  (t - -  t') 4 ( t - - t ' )  ) 

ala~x (exp ( - -x  2) --}- I / a2  exp ( - -2x  2) + asx2) -1 -l- a~x exp (-- x2)(1 -I- bzx -~- bsx 2) -1, 

2 l 3 )  
x =  2 ' " - - ~ '  2~ 

4a] 26 
a 2 = ( a l - - 1 )  2 , a 3 = - - ,  b 2 = 2 ] / ~ - ,  b 3 = 4 n - - - -  

3 

Now,  s a t i s f y i n g  t h e  b o u n d a r y  c o n d i t i o n s  and t h e  t h e r m a l  c o n d u c t i v i t y  e q u a t i o n  a t  z = 0 ( t -  

tm), we obtain: 

h ~ =  h, , h ~ =  O ( t - - t m )  ho(t) , 
2o (t - -  t, .) 1 + o~ (t - -  t~ )  

e l :  e 2  = - h ;  (t)  
hol ho (t) 

Then the temperature field T 2 for ~ ~ 1 can be represented approximately as: 

0 ~-~ z ~ s (t): T 2 = - -  ~ (ho -}- h, yl + hey ~ + ho exp (--Y2gz - -  y2292)), 

2 2 s ~ z ~ 1" T 2 = - -  ~ (ho exp (-- Y l g l  - -  ylg~) + ho exp ( - -  g2g~ - -  Y2g2)), 

O s ( t ) ,  y l = z - - s ( t ) ,  y 2 = 2 - - z - - s ( t ) .  
t - - t m  

Appropriate estimates will show that the accuracy of this representation of T 2 is about 1% 
of the dimensionless fusion temperature. It is considered here that the parameter $ for 
metals varies over the interval 0ol-0.3. For titanium, for example, ~ = 0.23. 

The temperature field T 2 found in this way still contains the unknown melt pool thick- 
ness s(t). This latter can be found from an equation specifying the equality of the temper- 

ature on the phase transition front to the melting point: 
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T l ( t ,  z = s ( t ) ) +  T~(t ,  z = s ( t ) ) =  1, i . e . ,  

([0 exp ( - -  s[1 - -  s2[~) + ~[3) - -  ~ho (1 q- exp ( - -  2 (1 - -  ~ gl  - -  4 (1 - -  s)2g~)) = 1. 

The p r o p o s e d  me thod  was u s e d  t o  c a l c u l a t e  m e l t i n g  o f  a t i t a n i u m  p l a t e  f o r  p a r a m e t e r  
v a l u e s  a = 1 and  0 . 7 5 ,  6 = 0 and  0 . 2 3 .  i n  a l l  t h e s e  c a s e s  m e l t - t h r o u g h  o f  t h e  t a r g e t  o c -  
c u r r e d  before the target surface was heated to the boiling point, equal in dimensionless 
units to ~ 2. Figure la shows time dependences of temperature of the target front face. All 
the graphs break off at the time when the temperature of the target rear surface reaches 
the melting point of the metal. All physical quantities in the figures are de-dimensional- 
ized as indicated above. It is evident from Fig. 1 that consideration of absorption of the 
heat of phase transition produces an inflection in the time dependence of front surface tem- 
perature at the moment when fusion begins, and increases the time required for target melt- 
through somewhat. The decrease in temperature for one and the same time reaches 10% of the 
fusion temperature. 

As is evident from Fig. Ib consideration of absorption of the heat of phase transition 
causes the rate of increase of target rear surface temperature to vanish at the time melt- 
through is completed. 

Figure ic shows that if we neglect absorption of the heat of phase transition, the rate 
of increase in melt thickness at the moment of plate melt-through becomes infinite. At this 
time the thickness of the melt layer in the case where ~ = 0.23 is approximately half as 
much as for $ = 0. It is also evident that for $ = 0.23 the time dependence of target melt 
depth is almost linear, as was assumed in the calculations. 

Figure 2 shows the spatial dependence of the temperature field at various times and the 
dependence of the temperature gradient on the front target surface upon dimensionless ther- 
mal flux power density ~. It is evident from the figure that upon consideration of the ab- 
sorption of the heat of phase transition the characteristic inflection of the temperature 
field T(t, z) on the fusion front is hardly noticeable for the parameter values used. 

To summarize, we may conclude that consideration of the absorption of the heat of phase 
transition in solving the problem of metallic plate fusion introduces a small correction to 
the temperature field (up to 10% of the fusion temperature) and a significant correction to 
the depth of the melt pool (up to 50% of the target thickness). Moreover, the behavior of 
T(t, z = i) and s(t) at the moment melt-through is completed changes not only quantitatively, 
but also qualitatively. 

NOTATION 

t', t, source action time on target; tm, time when target melting begins; R, transverse 
dimension of source action on target; H, target thickness; z', z, spatial coordinate mea- 
sured inward into target from front surface; To, initial target temperature; Tm, target fu- 
sion temperature; Tb, target boiling point; T, Tz, T2, T3, temperature fields within target; 
a, thermal diffusivity coefficient; ~, thermal conductivity coefficient; ~, target density; 
c, specific heat; L, specific heat of target fusion; s(t), target fusion depth; %, ~, 6, di- 
mensionless parameters of problem. 
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